Oxford University Press's
Academic Insights for the Thinking World

Did you say millions of genomes?

Watching the field of genomics evolve over the past 20 years, it is intriguing to notice the word ‘genome’ cozying up to the word ‘million’. Genomics is moving beyond 1k, 10k and 100k genome projects. A new courtship is blossoming.

The Obama Administration has just announced a Million Genomes Project – and it’s not even the first.

Now both Craig Venter and Francis Collins, leads of the private and public versions of the Human Genome Project, are working on their million-omes.

The company 23andMe might be the first ‘million-ome-aire’. By 2014, the company founded by Ann Wojcicki processed upwards of 800,000 customer samples. Pundit Eric Topol suggests in his article “Who Owns Your DNA” that without the skirmish with the FDA, 23andMe would already have millions.

In 2011, China’s BGI, the world’s largest genomics research company, boldly announced a million human genomes project. Building on projects like the panda genome and the 3000 Rice Genomes project, the BGI is building new next-generation sequencing technologies to support its flagship project.

Also in 2011, the United States Veterans Affairs (VA) Research and Development program launched its Million Veteran Program (MVP) aiming to build the world’s largest database of genetic, military exposure, lifestyle, and health information. The “large, diverse, and altruistic patient population” of the VA puts it ahead of the others in collecting samples.

Venter’s path will be through his non-profit Human Longevity, Inc (HLI), launched in San Diego, California in 2014 with $70 million in investor funding. To support the company’s tagline — “It’s not just a long life we’re striving for, but one which is worth living” — Venter aims to sequence a million genomes by 2020.

At a price tag of $1000 dollars per genome, one million genomes could cost a billion US dollars. The original human genome project cost $3 billion only 13 years ago, but produced 1 trillion US dollars in economic impact.

The Collins’ ‘million-ome’ will pull together new and existing genomes, with an initial budget of $215 million dollars. This includes genomes from the MVP, which has already enrolled 300,000 veterans and sequenced 200,000. The focus will initially be on cancer but subjects will be healthy and ill, men and women, old and young; it is the foundation of a Precision Medicine Initiative.

3D DNA, © digitalgenetics, via iStock Photo.
3D DNA, © digitalgenetics, via iStock.

In addition to these projects we will have millions anyway. ARC Investment Analysis suggested we could see 4 to 34 billion human genomes by 2024 at historical rates of sequencing – if current trends in dropping costs and demand continue.

How could we have more genomes than humans living on earth? Cancer genomics is in ‘gold rush’ phase. Steve Jobs was famously one of the first 20 people to have his genome sequenced. He paid $100k but did so to also have the genome of the cancer that killed him sequenced. He left a personal genomics legacy to the world, but his investment in DNA sequencing also serves as a reminder that a genome is not the same as a cure. Hopes are high, though, especially for cancer diagnostics. The International Cancer Genomics Consortium is already backed with a billion dollar budget and the field continues to explode.

Further, an adult human body consists of 37 trillion genomes all working together (plus the 100 trillion genomes of the microbial cells in our microbiome). There is mounting evidence we are all genomic mosaics, meaning we all have more than one genome (e.g. from pre-cancerous cells, transplants, and mothers who carry the genomes of past live-born babies).

It is good to cultivate a healthy skepticism and not be drawn into the hype. Critics exist, as always. At the other end of the continuum, Ken Weiss of The Mermaid’s Tale blog, a geneticist himself, has outlined reasons to put valuable research dollars elsewhere than a million genomes project or precision medicine, but given than they will happen, he also contemplates what should be done with resulting data.

Eric Topol said in response to the rise of ‘million-ome’ projects, that there are now many 100k projects and he “might rather have 100,000 people with ‘pan-oromic definition’ than 1 million with just native DNA”. By high definition he means all the mapping (sensors, anatomy, environmental quantified, gut microbiome, etc.) that belongs to his vision of a “Google medical map”.

There are huge differences between “projections,” “announcements,” and “hard (published) data.” Big projects can fall by the way-side. 23andMe hit a barrier with the FDA decision. The BGI is still tooling up. Obama hasn’t yet secured a budget. Venter is giving himself time. Everyone is starting to think about genomes inside the systems in which they exist in (cells, organs, organisms, ecosystems).

Regardless of trajectory, it is a foregone conclusion that, counting all sources, the number of sequenced genomes will pass one million in 2015, if it hasn’t already.

Google is imagining the day when researchers compute over millions of genomes and is building the infrastructure to support it; Google Genomics has launched offering $25/year pricing to hold your genome in the Cloud.

Why stop at millions? Jong Bhak is calling for billions. He is suggesting that “the genomics era hasn’t even started.” Bhak, a leader of the Korean Personal Genomes Project, a project to sequence the genomes of all 50 million Koreans, has outlined a vision for a Billion Genome Project.

The first to talk of ‘a genome for everyone’ was perhaps George Church, technologist and founder of the Personal Genome Project. He wrote 2005 a paper entitled “The Personal Genome Project.” In it he recalled talking with Wally Gilbert that “Six billion base pairs for six billion people had a nice ring to it”—back in 1976, soon after Gilbert invented DNA sequencing, for which he won a Nobel Prize.

The fact that more voices in global science are debating the pros and cons of ‘millions and billions of genomes’ is evidence that 2015 marks a shift towards a Practical Genomics Revolution. It is becoming practical to think big(ger).

Recent Comments

  1. […] to isolate factors which make us susceptible to cancer involve ever-growing databases – one is planned to contain one million – putting it firmly within the realms of Big […]

  2. […] researchers that are involved in improving the treatment of patients. Several national cohort and genome-projects already provide a big wave of […]

  3. […] researchers that are involved in improving the treatment of patients. Several national cohort and genome-projects already provide a big wave of […]

Comments are closed.