Oxford University Press's
Academic Insights for the Thinking World

The Milky Way’s tilted dark matter halo

By Victor P. Debattista

The gravity of the Milky Way Galaxy is tearing the Sagittarius Dwarf Galaxy apart. Stars ripped out of the tiny galaxy have ended up in a stream, which wraps around our own much heavier galaxy. For over a decade astronomers have been trying to use the distances and speeds of stars in this stream to measure and model the shape of the Milky Way’s dark matter distribution — its dark matter halo.

Early models assumed that the disc of the Milky Way must be perpendicular to one of the three axes of the halo. In 2010 astronomers showed that the best model for matching the data was triaxial. This model favoured the disc being perpendicular to the intermediate axis of the dark matter, rather than the long or short axes.

New work, however, shows that galaxies starting out in this position within a halo quickly tip over. As a result the Milky Way would have long ago tilted away from this orientation, making this model extremely unlikely.

Additionally, our simulations show that the disc can remain inclined relative to all three axes for a long time provided gas is present. From the point of view of the dark matter halo, the Milky Way disc is tilted at a random angle. This makes it much harder to model the precise shape of the halo. Nevertheless, our models where only the stars and gas exist cannot produce the sideways forces which a tilted halo produces. Proof that the motions of stars in the Sagittarius stream require such a tilt would also prove that dark matter exists.

Dr. Victor P. Debattista is Reader in Astrophysics at the University of Central Lancashire, where he leads the Galaxy Dynamics group. He is the lead author of “What’s up in the Milky Way? The orientation of the disc relative to the triaxial halo” in the Monthly Notices of the Royal Astronomical Society (MNRAS).

Monthly Notices of the Royal Astronomical Society is one of the world’s leading primary research journals in astronomy and astrophysics, as well as one of the longest established. It publishes the results of original research in astronomy and astrophysics, both observational and theoretical

Subscribe to the OUPblog via email or RSS.
Subscribe to only physics and chemistry articles on the OUPblog via email or RSS.

Recent Comments

  1. [...] cut off the list here, or it will extend far too long — despite my urge to share more about dark matter, photosynthesis, [...]

Leave a Comment

Your email address will not be published. Required fields are marked *